Tutorial 2

Correcting Thermal Focus Errors

This tutorial assumes that you have the results of Tutorial 1 available for use.
In this tutorial you will learn:
how to calculate the effects of thermal expansion or contraction of the housing
how to calculate the thermal change in focal length of a lens
how to calculate the focus error caused by thermal effects on the lenses and the housing how to specify an adjustment mechanism to correct the focus errors

Your project, an infrared receiver defined in Tutorial 1, is concerned about the sensitivity of the focus to changes in temperature.

Task 1:
Detemine the focus shift caused by a temperature change of $\pm 10 \mathrm{C}$ degrees, assuming the housing is aluminum.

AEH.

In Tutorial 1 you ran Ivory to create the Optomechanical Constraint Equations. You then opened them in Excel and calculated the focus shift from the anticipated assembly tolerances. You will now open that Excel file from Internet Explorer:

You will re-name the first sheet from "IRREC" to "Toleraces", add a second sheet and name it "Thermal."

You will then copy the contents of the first sheet, Tolerances, onto the second sheet, Thermal. On the Thermal sheet erase all the calculations that were copied from the Tolerances sheet so you have only the Ivory output file data on the Thermal sheet.

The temperature change affects the focus of the system through thermal expansion or contraction of the aluminum housing, through the thermal expansion or contraction of the lenses and changes in the index of refraction of the lens material. The changes in the aluminum housing primarily affect the air spacing of the elements whereas the changes to the elements primarily affect their focal lengths. You will need the material properties for the aluminum and the germanium:

$\mathrm{dl} / \mathrm{ldT}$	$\mathrm{dn} / \mathrm{dT}$
$(\operatorname{per} \mathrm{C})$	$($ per C$)$

aluminum
germanium 23.4×10^{-6}

The first column is the coefficient of thermal expansion (CTE). The second column is the thermal coefficient of refractive index (TCRI).

Record these values at the top of the Thermal spreadsheet for future use.
See the next page for the results.

Next you need to calculate the length of the aluminum between the lenses that control the air spaces. You may initially assume the length between two lenses to be the distance between their first vertices. Calculate these distances on he spreadsheet next to the physical prescription data.

Then calculate the total distance of each lens from lens \#1.
Of course you may wish to revisit any (or all) your assumptions later.

Now you must calculate the displacement vector per degree C. Lets start at lens 2.
First, at the top of the OCE you may set up three column headings as shown.
 from the top of the sheet that apply to each of the dimensional quantities.

AEH.
Optomechanics

Fourth, calculate the Z axis displacement per C of lens 2:
Tz per $\mathrm{C}=(\mathrm{Z}$ distance)(aluminum'sCTE)

The change in focal length per C is the sum of the contributions from the four lens design vairables: the thickness, the first radius, the second radius and the index of refraction, as shown in the equation.

Now, to get the contribution of lens 2 to the image motion at the detector you multiply the influence coefficients for lens 2 by the displacement vector for lens 2 , as shown.

Looking more closely at the net registration error we see that a 1 deg C increase causes the image to fall in front of the detector by 0.0889 inches. It also causes a 0.61% reduction in image size. Therefore for a ± 10 deg C change in temperature the focus wi/l shift ± 0.889 inches.

Tz of the image $= \pm 10 \operatorname{deg} C x \pm 0.0889$ inches per deg $C= \pm 0.889$ inches.

Task 2: Specify the requirements of an actuator to move Lens 3 the correct the thermal focus errors.

