Tutorial 1

Correcting Assembly Focus Errors

In this tutorial you will learn:

how to set up a "project" directory for running Ivory how to put optical prescription data into Ivory's project files how to run Ivory in both its SETUP and default Project modes how to read the Ivory output file into a Microsoft Excel spreadsheet how to put element displacements into the spreadsheet how to calculate the resulting worst case registration errors at the detector how to calculate the diffraction depth of focus for the system how to calculate the lens adjustment necessary to correct a predicted focus error

You have been assigned to an infrared receiver project. The optics looks like this ...

... and it has the following optical prescription:

Surface	Lens	Radius	Index	Thickness
1	obj.	inf.	1.0000	inf.
2	1	300.	4.0026	2.0000
3	1	-300.	1.0000	5.3566
4	2	-110.	4.0026	3.4500
5	2	-55.	1.0000	17.7750
6	3	-310.	4.0026	2.0000
7	3	215.	1.0000	11.9417
8	4	11.	4.0026	1.5000
9	4	22	1.0000	20.4727
10	det.	inf.	1.0000	0
	(Dim	ensions are in	nches)	

Task 1:

Your shop says they can probably locate each of the elements within 0.010 inches. How much focus error might you expect and how much motion of lens #3 would be necessary to correct it?

Optomechanics

First you reverse the Z axis to agree with Ivory's mechanical conventions and adjust the signs in the optical prescription accordingly,

Surface	Lens	Radius	Index	Thickness
1	obj.	inf.	1.0000	inf.
2	1	-300.	4.0026	2.0000
3	1	300.	1.0000	5.3566
4	2	110.	4.0026	3.4500
5	2	55.	1.0000	17.7750
6	3	310.	4.0026	2.0000
7	3	-215.	1.0000	11.9417
8	4	-11.	4.0026	1.5000
9	4	-22.	1.0000	20.4727
10	det.	inf.	1.0000	0
1.pmd(3)				

Then you create a new directory, say IRREC, in Windows Explorer. This will be where you will be working. You move a copy of the Ivory executable file into this directory.

You now call up Ivory to prepare the project data files by double-clicking on the Ivory execut-

the surface-by-surface data into Ivory. A blank entry for any surface will produce the detector entry automatically and close the file.

Optomechanics

1.pmd(5)

You may now double-click on IRREC.DAT to review (and edit, if necessary) the data file. It will open in either Notepad or WordPad.

			😂 C:\11\IvoryTu	torials\1\IRREC						
			<u>File E</u> dit <u>V</u> iew	F <u>a</u> vorites <u>T</u> oo	ls <u>H</u> elp			1		
			Address 🛅 C:\11	IvoryTutorials\1\IF	RREC		💌 🔁 Go	Links »		
			Folders			× Name	*			
			E	i 1			RY24.EXE			
				🚞 IRREC			RECIDAT			
			🛛 🗉 🚞	Коа						
			🗉 🗉	Lac						
			E 🚞	Lad						
			E 🚞 🗉 📜	laptop						
IRRE	C.DAT -	WordPad							_	
<u>F</u> ile <u>E</u> di	t <u>V</u> iew	Insert For	mat <u>H</u> elp							
				B .						
Surf	Elem	Radius	Index	Thickness	Type	f1	f2	£3	f4	
1	obj	inf	AIR	inf	obj	1.0000000	0.0000000	0.0000000	0.0000000	
2	1	-300	GE	2	LENS	0.0000000	0.0000000	0.0000000	0.0000000	
3	1	300	AIR	5.3566	LENS	0.0000000	0.0000000	0.0000000	0.0000000	
4	2	110	GE	3.45	LENS	0.0000000	0.0000000	0.0000000	0.0000000	
5	2	55	AIR	17.775	LENS	0.0000000	0.0000000	0.0000000	0.0000000	
6	3	310	GE	2	LENS	0.0000000	0.0000000	0.0000000	0.0000000	
7	3	-215	AIR	11.9417	LENS	0.0000000	0.0000000	0.0000000	0.0000000	
8	4	-11	GE	1.5	LENS	0.0000000	0.0000000	0.0000000	0.0000000	
9	4	-22	AIR	20.4727	LENS	0.0000000	0.0000000	0.0000000	0.0000000	
10	det	inf	AIR	0.0	det					
For Help,	press F1								CAP	//

This is you chance to correct any typing mistakes you might have made while putting the data into Ivory. Make any corrections and save the file.

Now you need to re-enter SETUP to prepare the index of refraction data file. A blank entry for a glass input saves the file and closes the window. Double-click on IRREC.IND to review the contents of the file and correct any typing errors.

The lens material is germanium and is entered in the file with its mnemonic GE.

Note that Ivory automatically enters AIR at a value of 1.0.

Beware: The glass names are case sensitive between the *.DAT and *.IND files.

Optomechanics

Optomechanics

📕 IRREC.OUT - No	tepad												
<u>File E</u> dit F <u>o</u> rmat	<u>V</u> iew <u>H</u> elp												
Output from -	IVORY Optomechancial Modeling Tools Version 2.4 Copyright 2010, Alson E. Hatheway Inc.												
This Product	This Product has been licensed to Alson E. Hatheway Inc. for one user(s).												
PROJECT NAME	'IRREC'	TIME AND DATE	E: 18:02:35 1	2-19-2009									
PHYSICAL PRES	SCRIPTION ECHO												
Surf 1 2 3 4 5 6 7 8 9 10	Elem obj 1 2 2 3 3 4 4 4 4	Radius inf -300 300 110 55 310 -215 -11 -22 inf	Index 1.0 4.0026 1.0 4.0026 1.0 4.0026 1.0 4.0026 1.0 1.0	Thickness inf 2.3566 3.45 17.775 2 11.9417 1.5 20.4727 0	Type obj LENS LENS LENS LENS LENS LENS LENS LENS	f1 0 0 0 0 0 0 0	f2 0 0 0 0 0 0 0 0 0 0	F3 0 0 0 0 0 0 0 0 0	f4 0 0 0 0 0 0 0 0				
INDEXES OF RE	EFRACTION ARE R	ELATIVE TO THE	E VALUE OF 1	000292									
ELE obj 1 2 3 4 det	F 0 50.08193 34.98851 -42.16034 6.647026 0	H1 0 2504639 -1.646407 2942056 .3399783 0	H2 0 - 2504639 - 8232033 - 2040458 - 6799567 0	P 0 1.499072 2.626797 1.501749 1.160022 0	P/AIR inf 7.25347 17.246 11.80577 21.15266 0	PHI 0 0 0 0 0 0 0	THETA 0 0 0 0 0 0 0	TYPE obj LENS LENS LENS LENS det					
SYSTEM	-51.578990583	265.29299278	3 -72.0452835	i94 381.36157	697 -51.57258029	4							
OBJECTS, IMAG	SES AND MAGNIFI	CATIONS											
ELE obj 1 2 3 4 det	F 50.08193 34.98851 -42.16034 6.647026 inf	5 0 -42.8285 -2.0108 +9.6943 +6.39D-03 +	5' 0 -19.2568 -2.1115 -21.1463 -6.39D-03	M +1.0000 +0.4496 +1.0501 -2.1813 +1.0	PHI THETA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		TYPE obj LENS LENS LENS LENS det	e/Tzo +0.00D+00 +1.29D-02 -2.49D-02 -3.28D-01	×				

This is the top half of the output file with the physical and Gaussian prescription data, the location of all the intermediate images and the magnification at which each lens is working.

Check the data in the output file. Two of the important values are --

...and the image distance at the detector should be very small.

File Edit Fo	rmat View He	lp								
OPTOMECHAN	ICAL CONSTRA	INT EQUATIO)NS (A	BSOLUTE VAL	UES SMALLER	THAN O	ARE PRINTED	AS 0.0)		
				REGISTRA	TION VARIAE	LES				
	ТΧ	TY	TZ	RX	RY	RZ	DM/M	Df,p	LDesVar	
T× Ty Tz Rx Ry Rz Df,p SYSTEM-OBJE	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 +1.00000 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	Dt DR1 DR2 Dn	
TX Ty Tz Rx Ry Rz Df,p ELEMENT-1	-1.02989 0.0 0.0 0.0 +1.54389 0.0 0.0	0.0 -1.02989 0.0 -1.54389 0.0 0.0 0.0 0.0	0.0 0.0 +1.06068 0.0 0.0 0.0 -1.06068	0.0 0.0 -1.02989 0.0 0.0 0.0 0.0	0.0 0.0 0.0 -1.02989 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 -0.06534 0.0 0.0 0.0 +0.08531	+0.06277 -0.08326 +0.08326 -16.66907 0.0 0.0 0.0 0.0	Dt DR1 DR2 Dn	
T× Ty Tz R× Ry Rz Df,p ELEMENT-2	-1.26067 0.0 0.0 +6.01684 0.0 0.0	0.0 -1.26067 0.0 -6.01684 0.0 0.0 0.0	0.0 0.0 +4.18598 0.0 0.0 0.0 -1.58928	0.0 0.0 -1.26067 0.0 0.0 0.0	0.0 0.0 0.0 -1.26067 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 -0.32143 0.0 0.0 0.0 +0.13289	-0.45577 -0.28949 +1.24372 -11.78357 0.0 0.0 0.0	Dt DR1 DR2 Dn	
Tx Ty Tz Rx Ry Rz Df,p ELEMENT-3	+0.10925 0.0 0.0 +3.27578 0.0 0.0	0.0 +0.10925 0.0 -3.27578 0.0 0.0 0.0	0.0 0.0 -0.48854 0.0 0.0 0.0 -0.01193	0.0 0.0 +0.10925 0.0 0.0 0.0 0.0	0.0 0.0 0.0 +0.10925 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 +0.05860 0.0 0.0 +2.011E-03	+0.06007 -0.05592 +0.11602 +14.05127 0.0 0.0 0.0	Dt DR1 DR2 Dn	
Tx Ty Tz Rx Ry Rz Df,p ELEMENT-4	+3.18131 0.0 0.0 -1.16002 0.0 0.0	0.0 +3.18131 0.0 +1.16002 0.0 0.0 0.0	0.0 0.0 -3.75813 0.0 0.0 0.0 -10.12075	0.0 0.0 +3.18131 0.0 0.0 0.0	0.0 0.0 0.0 +3.18131 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 +0.32816 0.0 0.0 0.0 +0.47861	-0.41124 -1.15247 +0.24606 -2.26508 0.0 0.0 0.0 0.0	Dt DR1 DR2 Dn	
Tx Ty Tz Rx Ry Rz Df,p Detector	-1.00000 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 -1.00000 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 -1.00000 0.0 0.0 0.0 0.0	0.0 0.0 -1.00000 0.0 0.0 0.0	0.0 0.0 0.0 -1.00000 0.0 0.0	0.0 0.0 0.0 0.0 -1.00000 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	Dt DR1 DR2 Dn	_
									<u> </u>	

The bottom half of the output file contains all of the influence coeficients in the form of the Optomechanical Constraint Equations. These should be checked for "reasonableness," that is, very large and very small values should be noted and verified.

One method is to compare the coefficients to the related F and M values in the top half of the output file. These seem reasonable so you'll proceed with the Task 1.

To address Task 1 you will want to open the Ivory output file in a Microsoft Excel worksheet. In Excel, ______1) Click here and on "Open"

Check the data in the spreadsheet to be sure it was properly interpreted by Excel.

														_
· ·	A	в	С	D	E	F	G	н	- I -	J	К	L	м	-
1	Output	from	•											-
2		IVORY	Optomed	Madeling	Toolr									
3		Versian	2.4											
4		Capyrigh	2010,	Alron	Ε.	Hathowa	Inc.							
5														
6	Thir	Product	har	boon	licented	to	Alron	Ε.	Hathowa	Inc.	for	one	wor(r).	
7														
8	PROJEC [®]	NAME:	'IBBEC'	TIME	AND	DATE:	18:02:35	*****						
9														
10	PHYSICA	PRESCR	ECHO											
11														
12		Surf	Elom	Badiur	Index	Thicknes	Type	61	62	63	64			
13		1	nhi	inf	1	inf	nhi							
14		,	1	-300	4 0026	····· >	LENS							=
45		2		200	4.0060	5 2544	IENC							-
46				110	4 0026	3.3300 2.4E	LENC							
47		4		55	4.0026	47 775	LENS							
40			-	33	4 0034	11.119	LENS							
18			3	310	4.0026	4 4 4 7	LENS	0						
19		ſ	3	-215	1	11.9417	LENS	0	U A			1	_	
20		*	4	-11	4.0026	1.5	LENS	0	U A			1	_	
21		9	4	-22	1	20.4727	LENS		U]	_	
- 22		10	dot	INF	1	0	dot							
23														
24	INDEXES	OF	REFRAC	ARE	RELATIV	TO	THE	VALUE	OF	1.00029	•			
25														
26														-
27	GAUSSIA	PRESCR	IPTION											
28														
29		ELE	F	H1	H2	P	P/AIR	PHI	THETA	TYPE				
30		obj	0	0	0	0	inf	0	0	obj				
31		1	50.0819	-0.2505	0.25046	1.49907	7.25347	0	0	LENS				
32		2	34.9885	-1.6464	-0.8232	2.6268	17.246	0	0	LENS				
33		3	-42.16	-0.2942	0.20405	1.50175	11.8058	0	0	LENS				
34		4	6.64703	0.33998	0.67996	1.16002	21.1527	0	0	LENS				
35		dat	0	0	0	0	0	0	0	dot				
36														
37	SYSTEM	-51.579	265.293	-72.045	381.362	-51.573								
38														
39														
40	OBJECTS	IMAGES	AND	MAGNIFI	CATIONS									
41														
42		ELE	F	s	S'	м	PHI	THETA	TYPE	ofTza				
43		obj	inf	0	0	1	0	0	obj					
44		1	50.0819	inf	-50.082	0	0	0	LENS	+0.00D+	00			
45		2	34,9885	-42.829	-19.257	0.4496	Ó	0	LENS	+1.29D-0	2	<u> </u>		
46		3	-42,16	-2.0108	-2,1115	1.0501	Ó	0	LENS	-2.49D-0	2	<u> </u>		
47		4	6.64703	9.6943	-21.146	-2,1813	Ó	0	LENS	-3.28D-0	-			
48		dat	inf	+6.39D-0	+6.39D-0	1	Ň	0	dat			<u> </u>		
49							· ·							
50														
51	OPTOME	CONSTR	FOUATIO	(ARSOL)	UALLIES	SMALLE	THAN		ARE	PRINTER	145	0.03		
52	OFTOPIE	CONSTR	ECONTIO	(ABSOL)	TALOES	SPINCE	17HIT		ADE	FRINTEL	H3	0.0)		
52		DEGISTO	HADIADI											
55		REGISTR	TANIABL	23							-			-
54		_		-	_				_			_	-	
14	< > >	IR	REC /	°7 /				- I <						
-													0	
Re	ady							- 50	% 🕒	-			-+)	
nmd()	13)													

	A	В	С	D	E	F	G	н	1	J	К	L	М			
54		TX	TY	12	RX	BY	R7	DM/M	Dfe	I Deeller						
56		10		16	D0	ni -	ns	Diana	Dr,p	LDervar						
57	T×	0	0	0	0	0	0	0	0	Dt						
58	Ty	0	0	0	0	0	0	0	0	DR1						
59	Tz	0	0	0	0	0	0	0	0	DR2						
60	R×	0	0	0	0	0	0	0	0	Dn						
61	By	0	0	0	0	0	0	0	0							
62	nz Dés	0	0	0	0	0	1	0	0							
64	SYSTEM	-OBJECT	· · ·	· · ·			Ť	· · ·	· · ·							
65																
66	T×	-1.0299	0	0	0	0	0	0	0.06277	Dt						
67	Ty	0	-1.0299	0	0	0	0	0	-0.0833	DR1						
68	Tz	0	0	1.06068	0	0	0	-0.0653	0.08326	DR2						
69	R×	0	-1.5439	0	-1.0299	0	0	0	-16.669	Dn						
70	Ry B-	1.54389	0	0	0	-1.0299	0	0	0							
72	nz Dés	0	0	-1.06.07	0	0	0	0.02531	0							
73	ELEMENT	т-1 Т-1	· · · ·	1.0001			· ·	0.00000	· · ·							
74																
75	T×	-1.2607	0	0	0	0	0	0	-0.4558	De						
76	Ty	0	-1.2607	0	0	0	0	0	-0.2895	DR1						
77	Tz	0	0	4.18598	0	0	0	-0.3214	1.24372	DR2						
78	Rx	0	-6.0168	0	-1.2607	0	0	0	-11.784	Dn						
79	By	6.01684	0	0	0	-1.2607	0	0	0							
80	Rz Rz	0	0	0	0	0	0	0	0							
81	DF,p	U T-2		-1.5893	v	v	v	0.13289								
20	ELEPIEN	1-2														
84	Tx	0.10925	0	0	0	0	0	0	0.06007	Dt						
85	Ty	0	0.10925	0	0	0	0	0	-0.0559	DR1						
86	Tz	0	0	-0.4885	0	0	0	0.0586	0.11602	DR2						
87	R×	0	-3.2758	0	0.10925	0	0	0	14.0513	Dn						
88	Ry	3.27578	0	0	0	0.10925	0	0	0							
89	Rz	0	0	0	0	0	0	0	0							
90	Df,p	0	0	-0.0119	0	0	0	2.01E-03	0							
91	ELEMEN	1-3														
93	T×	3,18131	0	0	0	Û	0	0	-0.4112	De						
94	Ty	0	3.18131	0	0	. 0	0	0	-1.1525	DR1						
95	Tz	0	0	-3.7581	0	0	0	0.32816	0.24606	DR2						
96	Rx .	0	1.16002	0	3.18131	0	0	0	-2.2651	Dn						
97	Ry	-1.16	0	0	0	3.18131	0	0	0							
98	Rz	0	0	0	0	0	0	0	0							
99	Df,p	0	0	-10.121	<u>y</u>	0	0	0.47861	0							
100	ELEMEN	1-4														
101	Tu	-1	0			0	0	0	0	De						
102	Ty	-1	-1	0		0	0	0	0	DB1						
104	Tz	0	0	-1	- o	ů 0	ů.	ů 0	Ő	DR2						
105	R×	0	0	0	-1	0	0	0	0	Dn						
106	By	0	0	0	0	-1	0	0	0							
107	Rz	0	0	0	0	0	-1	0	0							
108	Df,p	0	0	9	0	0	0	0	0							
109	DETECTO	DR		-												
H.	\leftrightarrow		REC 📈	<u> </u>							_					
Re	Ready															
				1.												
Y	You'll be working with just ALI .															
th	is t	otte	om	hal	f.				Ор	Optomechanics						

1.pmd(13)

Now you can calculate the focus error caused by the ± 0.010 position tolerances.

1.pmd(14)

Looking more closely at the results of the calculation, you see that you can expect a focus error of about $0.105 (\pm)$ inches, worst case.

To determine the necessary range of adjustment for lens #3 you then divide the focus error...

Image: line		দ লি ।							IRREC.O)UT - Micro	osoft Excel								- 5
Victor	Нат	e Insert	Pagela	yout Fo	rmulas C	ata Re	riew Vi	ew Acro	bat										🎯 – 🗖
Perto <th< td=""><td>A a</td><td>Jt .</td><td>Calibri</td><td>- 11</td><td>• A A</td><td>= =</td><td>_ &</td><td>Wrap</td><td>Text</td><td>General</td><td></td><td>•</td><td></td><td></td><td></td><td>×</td><td>Σ Autos</td><td></td><td>8</td></th<>	A a	Jt .	Calibri	- 11	• A A	= =	_ &	Wrap	Text	General		•				×	Σ Autos		8
Ciphont Fant C Augment C Number C Number Dipers Cells Early Cells	Paste	ormat Painter	BI	<u>.</u> • 🗐 •	<u>⊘</u> - <u>A</u> -			Merge	e & Center +	\$ - %	• • • • • •	.00 Condit	ional Format	t Cell	Insert De	lete Forma	t Clear	Sort &	Find &
K A B C D E F G H J M N O P C R S T U Tx 0.10925 0 0 0 0.00007 Dt 0.000193 0.00193 0	Clipboa	ard 😼		Font	la.		Aligr	nment	D)	Nu	mber	G	Styles	Styles	C	ells	-/	Editing	Jelett
A B C D E F G H I J M N O P Q R S T U Tx 0.10925 0 0 0 0 0 0.06007 0 0.00103 0 <td>f_x</td> <td></td>	f _x																		
Tx 0.10925 0 0 0 0.00000 Dt 0.001030 <th0< t<="" td=""><td>А</td><td>В</td><td>С</td><td>D</td><td>E</td><td>F</td><td>G</td><td>Н</td><td>1</td><td>J</td><td>M</td><td>N</td><td>0</td><td>Р</td><td>Q</td><td>R</td><td>s</td><td>Т</td><td>U</td></th0<>	А	В	С	D	E	F	G	Н	1	J	M	N	0	Р	Q	R	s	Т	U
N 0.10925 0 <th0< t<="" td=""><td></td><td>0.00000</td><td></td><td></td><td></td><td>2</td><td></td><td></td><td>000000</td><td>24</td><td></td><td></td><td>0 0</td><td>0</td><td>0</td><td></td><td>0 0</td><td>0</td><td></td></th0<>		0.00000				2			000000	24			0 0	0	0		0 0	0	
Image: Note of the second s	TX	0.10925	0 10025	0	0	0	0	0	0.06007	Dt		0.00109	3 0	0	0		0 0	0	
1 0	T7	0	0.10925	-0.48854	0	0	0	0.0586	-0.03392 L				0 0.001093	-0.00/189	0			0.000586	
Ry 3.27578 0<	Rx	0	-3.27578	0.10054	0.10925	0	0	0.0000	14.05127	Dn			0 0	0.00405	0	/	0 0	0	
Rz 0	Ry	3.27578	0	0	0	0.10925	0	0	0				0 0	0	0		0 0	0	
Dr.p 0	Rz	0	0	0	0	0	0	0	0			8	0 0	0	0		0 0	0	
ELEMENT-3 0	Df,p	0	0	-0.01.93	0	0	0	2.01E-03	0				0 0	0	0		0 0	0	
Tx 3.18131 0 <th0< th=""> 0 0 <th0< t<="" td=""><td>ELEMENT</td><td>r-3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0 0</td><td>0</td><td>0</td><td>/</td><td>0 0</td><td>0</td><td></td></th0<></th0<>	ELEMENT	r-3											0 0	0	0	/	0 0	0	
1x 3.18131 0<	- 20												0 0	0	0		0 0	0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	IX	3.18131	0	0	0	0	0	0	-0.41124 L	Jt		0.03181	3 0	0	- /		0 0	0	
Tx -1 0	ELEMENT	-4											0 0	0	0		0 0	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tu	-	0		0	0		0	0.5		-	0.0	0 0	0	0		0 0	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TV	-1	-1	0	0	0	0	0	0 0)R1	-	-0.0	0 -0.01	0	0		0 0	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tz	0	0	-1	0	0	0	0	0 0	DR2	-		0 0	-0.01	0		0 0	0	
Ry 0 0 0 -1 0	Rx	0	0	0	-1	0	0	0	0 0	Dn			0 0	0	0		0 0	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ry	0	0	0	0	-1	0	0	0			8	0 0	1	0		0 0	0	
Df,p 0	Rz	0	0	0	0	0	-1	. 0	0				0 0	0	0		0 0	0	
Defector vision of the second	Df,p	0	0	0	0	0	0	0	0				0 0	0	0		0 0	0	
Thank you for using IVORY(In to prepare the Optomet Constrain IRREC'. TX TY TZ RX RY RZ DM/M Thank you for using IVORY(In to prepare the Optomet Constrain IRREC'. TX TY TZ RX RY RZ DM/M Lens #3 adjustment= 0.21479 (±) 100% -100% by the Tz influence coefficient for lens #3. The answer for Task 1 is Tz =+0.215 in.	DETECTO	R													-				
by the Tz influence coefficient for lens #3. The answer for Task 1 is Tz =+0.215 in.	Thank	VOL	for	using	IV/OBV/tm	**		the	Ontomock	Constrain	Innect	0.06581	1 0.065811	0.104933	0	DV	0 0	0.007735	
by the Tz influence coefficient for lens #3. The answer for Task 1 is Tz =+0.215 in.		you	101	using	IVO AT(LIII	10	prepare	uie	optometric	Constrain	INNEC .	IA	IT	12	n.v.	NI	RZ	Divi/Ivi	
by the Tz influence coefficient for lens #3. The answer for Task 1 is Tz =+0.215 in. Δt												Lens #3 a	djustment=	0.21479	(±)				
by the Tz influence coefficient for lens #3. The answer for Task 1 is Tz =+0.215 in. Δt to be the task 1 is Tz =+0.215 in.																			
by the Tz influence coefficient for lens #3. The answer for Task 1 is Tz =+0.215 in. Δt						100					3					-		-	
by the Tz influence coefficient for lens #3. AE The answer for Task 1 is Tz =+0.215 in.	ady IK	KEC Ca				1		II.			3					E	田田 10	0%	
	by tl	he Tz	infl	uenco	e coe	fficie	ent f	or lei F he a	ns #3. n swe	er fo	or Ta	/ sk 1	is Tz	,=±0	.215	in.	Onto	A	E

Task 1:

Your shop says they can probably locate each of the elements within 0.010 inches. How much focus error might you expect and how much motion of lens #3 would be necessary to correct it?

Answer:

You can expect as much as ± 0.105 inches of focus error in the worst case combinations of assembly. If lens #3 is to be used to correct this assembly error it will require ± 0.215 inches of Z axis motion.

Task 2:

How accurate does the mechanism for lens #3 need to be in order to preserve diffraction limited performance?

C		2 3	Page La	out For	mulas D	lata Re	view Vi	ew Acr	IR:	REC.OUT - Micros	oft Ex							
Ĩ		ut	Calibri	* 11			R ()	W at	B Text	General	Т	he prec	ision r	equire	ed of the	he Tz	motio	n
Pa	ste	ormat Painter	BII	<u>.</u>	🏷 - <u>A</u> -			a Merc	je & Cent	er * 🚺 * %	, 0	f lens #	3 is ea	ual to	the ca	lculat	ed dif	_
	Clipbo	ard 🗔		Font	15		Align	iment		Num	lber C							
0	f_x										tr	action of	depth (of foc	us			
	А	В	С	D	E	F	G	Н	L.	J	P		-		1			
83	-																	
84	TX TV	0.10925	0 10025	0	0	0	0	(0.060	007 Dt								
86	Tz	0	0.10525	-0.48854	0	0	0	0.0586	0.11	602 DR2								
87	Rx	0	-3.27578	-0	0.10925	0	0	(14.05	127 Dn								
88	Ry	3.27578	0	0	0	0.10925	0		Ť.	м	N	0	P	0	R	ç	т	
89	Rz	0	0	0	0	0	0		100		100			~				
90	Df,p	0	0	-0.01193	0	0	0	2.01										
91	ELEMEN	F-3														-		
92	Тх	3.18131	0	0	0	0	0											
100	ELEMEN	Г-4																
101	-																	-
102	Tx	-1	0	0	0	0	0			10004004			11/2010/00					
103	Ty T-	0	-1	0	0	0	0			wavelen	gth=	11	microns=	0,00043	inches			
104	TZ Rv	0	0	-1	-1	0	0			entrance	e pupil=			24	inches			
105	Rv	0	0	0	0	-1	0			f/#=				-2.1491				
107	Rz	0	0	0	0	0	-1											
108	Df,p	0	0	0	p	0	0			Diffractio	on depth	offocus=	Ć	0.00815	inches=t	0.00407	inches	
109	DETECTO	R												\sim	/			
110	1.2 10																	
111	Thank	you	for	using	IVORY(tm	tp	prepare	the		11 × 1								
112	2												, IIII,				>	U
113														- 759	6 🖃 —		- (t	
115	1	the second					-	-								111	\sim	
Rea	IR IR	REC								×.	3							
INC.	idy																	

...divided by the Tz influence coefficient for lens #3

= 0.00815/0.48854 = 0.0167 inches. AEH.

Optomechanics

Correcting Assembly Focus Errors

If the optical elements are located within ± 0.010 inches and the focus is to be corrected by moving lens #3 in the Tz direction it will require an adjustment mechanicsm with:

Stroke = $2 \ge 0.215 = 0.430$ inches Accuracy = 0.0167 inches

